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Objective

fn main() { 

    println!(“Hello, world”); 

}
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Lexical Analysis



Lexical Tokens

fn main() { 

    println!(“Hello, world”); 

}

fn 

main 

( 

) 

{ 

println 

! 

( 

“Hello, world” 

) 

; 

}

123

// comments



Regular Expressions

Represent sets of strings


Symbol, Alternation, Concatenation, Epsilon, Repetition (Kleene closure)

(0 | 1)* · 0

Kleene closure: For some regular expression, M, its Kleene closure is M*, the 
concatenation of zero or more strings in M



(0 | 1)* · 0
Sequence of zero or 
more “0”s and “1”s in 

any combination

Concatenate this 
sequence with a single 

0

Even Binary Numbers
00000010 (4) 
10000000 (128)



Finite Automata
A way to formalize regular expressions so they can be implemented by a 

computer


Consist of states, edges, and symbols

21 [0-9]
[0-9]

[0-9]+
(+ denotes repetition of one or more times)



Deterministic Finite Automata

21 [0-9]
[0-9]

3
“

4
[A-Z]

“

We can combine automata to create a lexical analyzer


The goal is to find the longest match; i.e. the longest substring of the input that is a valid token



Nondeterministic Finite Automata

strings of a 
whose length is 
a multiple of 3

strings of a 
whose length is 

even

An automata which has a choice of edges labeled with the same symbol 
to flow from the current state

a
a

aa
a

a

a



So what?
We can convert regular expressions to nondeterministic finite automata, 

and then to deterministic finite automata

Simultaneously traverse all possibilities at each “step” of the NFA


Each set of destination states for these possibilities is called the ε-
closure


Every ε-closure is one node in the corresponding DFA



Partial Example

1

2 3

15
14

4

9

i

f

ε

ε

ε

any character

(abridged NFA)

keyword: if

invalid lexeme

ε-closure of {1} = {1, 4, 9, 14} 



ε-closure of {1}

{1, 4, 9, 14}

ε-closure always contains 
itself 

states reachable without 
consuming a token of the 

input



Parsing



Context-Free Grammars
Describes a language using sets of productions


Each production follows the form:


symbol -> s1 s2 s3 … sn

Terminal
 Nonterminal

123

“Hello, world” expression

function

println



An Example Grammar

expression -> term; 

term -> factor ((“+” | “-“) factor)*; 

factor -> primary ((“*” | “/“) primary)*; 

primary -> [0-9]+ | “(“ expression “)”;

5 * 6 / (3 + 3)



Predictive Parsing

Recursive Descent

expression -> term; 

term -> factor ((“+” | “-“) factor)*; 

factor -> primary ((“*” | “/“) primary)*; 

primary -> [0-9]+ | “(“ expression “)”;

5 * 6 / (3 + 3)
primary * 6 / (3 + 3)
primary * primary / (3 + 3)

primary * primary / (term)
primary * primary / primary

factor
expression

primary * primary / (primary + primary)



Predictive Parsing

Limitations

Cannot parse grammars that use left recursion or 
when two productions for the same nonterminal 

start with the same symbols

E -> E “+” T; 

E -> T;

S -> “if” E “then” S “else” S; 

S -> “if” E “then” S;



Eliminating Left Recursion
E -> E “+” num; 

E -> num;

Rewrite using right recursion

E -> num E’; 

E’ -> “+” num E’; 

E’ -> ;



Left Factoring

Create another nonterminal, X

S -> “if” E “then” S X; 

X -> “else” S; 

X -> ;

S -> “if” E “then” S “else” S; 

S -> “if” E “then” S;



LR Parsing
Left-to-right parse with a rightmost-derivation


Shift and reduce are the primary actions


Has a stack and an input

Shift: Advance the input one token and 
push that token onto the stack

Reduce: Pop the stack as many times as 
the number of symbols on the right-hand 
side of a production rule



LR Parsing
A deterministic finite automata is applied to the stack to 

determine when to shift and when to reduce


The edges of the DFA are labeled by the symbols that 
can appear on the stack


The transitions between edges can be modeled by a 
simple table



(1) S -> S “;”  

(2) S -> id “:=“ E; 

.. 

(5) E -> num

Parse Table
id num ; := S E

1 s4 g2

4 s6

6 s20 s10 g11

10 r5

11 r2

Based on DFA: numbers represent DFA state numbersa := 7;

Stack Input Action

id
:=

num

shift
:= 7; shift

id 7; shift
:=id ; reduce E -> num

E:=id ; reduce S -> id “:=“ E



DFA: Stack

id :=
num

E

S -> id “:=“ E

E -> num



Interlude



Now what?
During parsing, we convert the lexemes to an 

Abstract Syntax Tree (AST)


Each nonterminal of a grammar corresponds to a 
node type

Using this tree we can more easily perform:

Type checking

Translation to an 
intermediate 
representation



A (re)Introduction to Visitors
Incredibly useful for many semantic analysis 

phases, including type checking

Or just use a language with good enums like Rust

Each AST node type implements two methods:


accept() 

visit()

i.e. type checking: 


left.accept(this).type == right.accept(this).type



Intermediate Representation (IR)
A machine-independent abstraction for assembly


Simplifies the process for converting the recursive 
AST into a more machine-friendly format

Examples of IR nodes:

MOVE(src, dest) JUMP(label) CJUMP(trueLabel, falseLabel)

SEQ(left, right) TEMP(name)BINARY(op, left, right)

ESEQ(stmt, exp)



ESEQ?

Execute stmt, then evaluate and return exp

ESEQ(stmt, exp)

Wait, this violates assembly’s linearity!

Simplifies translation to IR, can clean it up later

def id(x): 

   return x 

y = id(5 + 5)

MOVE(t2, ESEQ(MOVE(t1, CALL(BINARY(Add, 
5 + 5)))), t1))



Eliminating ESEQ
Recursively pull all ESEQ nodes out of the tree


Replace ESEQ node with its expression

MOVE(t2, ESEQ(MOVE(t1,CALL(BINARY(Add, 
5 + 5)))), t1))

MOVE(t1,CALL(BINARY(Add, 5 + 5)))) 

MOVE(t2, t1)



Instruction Selection
For each IR node, we recursively generate 

assembly instructions, starting with the most 
deeply nested

MOVE(t1,CALL(BINARY(Add, 5 + 5)))) 

MOVE(t2, t1)

mov t1, 5 

mov t2, 5     1 

add t1,t2 

mov t1, %rdi 

call 

mov %rax, t1 

mov t1, t2

1 extra move instructions can be cleaned up by register allocator



Blocks and Traces



What about control flow?

We convert the linear list of statements into a set 
of blocks, and then arrange those blocks into 

traces

Blocks are always entered at the beginning and 
exited at the end

Traces are used to optimize control flow (more 
details on this later)



Blocks

A block is a sequence of statements where:


The first statement is a LABEL


The last statement is either a JUMP or CJUMP


Each of these must occur at most one time



Generating Blocks

Starting with the first statement, when a LABEL is 
found, start a new block

Whenever a JUMP or CJUMP is found, the current 
block is ended

If any block does not end with a JUMP or CJUMP, 
add a JUMP to the next block’s label

If any block has no LABEL, create a new one for it



Example

Color-coded blocks

.main: 

mov t1,5 

mov t2,6 

jmp .L1 if t1 < t2 else .L2

.L2 

sub t1,t2 

jmp .L3

.L1 

add t1,t2 

jmp .L3

.L3 

call printf t1 

jmp main.epilogue

How do we order these?



Generating Traces

Start with some initial block, and follow a possible 
execution path (the rest of the trace)

Repeat until all blocks are associated with one 
trace

For any blocks which end with an unconditional 
jump and are followed by the target label, remove 

the jump



Add all blocks to a list, Q 

while Q is not empty: 

    Start a new trace, T 

    Remove the head element b from Q  

    while b is not marked: 

       Mark b 

       Append b to the end of T 

       for successor of b: 

           if successor is not marked: 

               b = c 
   End T



Example

Traces.main: 

mov t1,5 

mov t2,6 

jmp .L1 if t1 < t2 else .L2

  .L2 

  sub t1,t2 

  jmp .L3 

.L1 

add t1,t2 

jmp .L3

  .L3 

  call printf t1 

  jmp main.epilogue

Trace #1

Trace #2



Liveness Analysis



What is liveness?
For a given variable, it is live if its current value 

will be used in the future

We can calculate the live range of a particular 
variable by starting at a use of a variable and 

searching backwards until that variable is defined

This can be done either one-variable-at-a-time or 
using set equations



b = {2 -> 3, 3 -> 4}

a = {1 -> 2, 4 -> 5, 5 -> 2} b := a + 1

c := c + b

a := b * 2

a < N

a := 0

return c

1

2

3

4

5

6

Example

c = entire range

n -> m is (n, m]



Interference Graphs

a b c

a x

b x

c x x



How are control flow graphs created?

Based on breadth-first search

Start with a queue containing the index of the first 
statement

For each statement, its “neighbors” are any 
successor nodes

Add an edge between statement and each neighbor 

Add neighbors to queue



b := a + 1

c := c + b

a := b * 2

a < N

a := 0

return c

1

2

3

4

5

6

Example Revisited

(5) is the only interesting node

Has two successors: 6 and 2



Project Challenges



Tooling Pitfalls

There are various ways to automate lexical analysis 
and parsing for both LL(k) and LR(k) classes of 

grammars

JavaCC
SableCC (Java)

pest (Rust)

Examples



Type-Checking

foo.bar.baz = 5;

Figure out whether bar exists on foo and what its 
type is

Now that we know what bar’s type is, see if baz 
exists, etc.

Straightforward concept, several small errors and 
many cases to handle

What if bar is a function?



Repetitive Analysis

foo.bar.baz = 5;

It’s useful to know what these types are in future 
phases

We don’t want to recompute every time

Initially was not saving results of type-checking 
phase which complicated future phases



How do we eliminate abstractions?

High-level concepts difficult to translate to 
something compilable

Classes or structs may have nested fields, but stack 
frames are linear

Solution: flatten structs

ESEQ and its myriad issues



Unresolved Questions:

Scope of Program Input

What is the class of valid programs?

Where are the edge cases?

How do I adequately test algorithms on many 
different inputs?



Thanks for listening


