
A (Very) Brief Survey of Compiler
Design

Independent Study
Sydney Newmark

Objective

fn main() {

 println!(“Hello, world”);

}

010101010101010101?

Frontend

Lexical Analysis

Parsing

Abstract Syntax Trees

Semantic Analysis

IR

Materials

Backend

Activation Records

Blocks

Traces

Liveness Analysis

Register Allocation

Source: Modern Compiler Implementation in
Java, by Andrew W. Appel and Jens Palsberg

Frontend

Lexical Analysis

Parsing

Abstract Syntax Trees

Semantic Analysis

IR

Focus

Backend

Activation Records

Blocks

Traces

Liveness Analysis

Register Allocation

Lexical Analysis

Lexical Tokens

fn main() {

 println!(“Hello, world”);

}

fn

main

(

)

{

println

!

(

“Hello, world”

)

;

}

123

// comments

Regular Expressions

Represent sets of strings

Symbol, Alternation, Concatenation, Epsilon, Repetition (Kleene closure)

(0 | 1)* · 0

Kleene closure: For some regular expression, M, its Kleene closure is M*, the
concatenation of zero or more strings in M

(0 | 1)* · 0
Sequence of zero or
more “0”s and “1”s in

any combination

Concatenate this
sequence with a single

0

Even Binary Numbers
00000010 (4)
10000000 (128)

Finite Automata
A way to formalize regular expressions so they can be implemented by a

computer

Consist of states, edges, and symbols

21 [0-9]
[0-9]

[0-9]+
(+ denotes repetition of one or more times)

Deterministic Finite Automata

21 [0-9]
[0-9]

3
“

4
[A-Z]

“

We can combine automata to create a lexical analyzer

The goal is to find the longest match; i.e. the longest substring of the input that is a valid token

Nondeterministic Finite Automata

strings of a
whose length is
a multiple of 3

strings of a
whose length is

even

An automata which has a choice of edges labeled with the same symbol
to flow from the current state

a
a

aa
a

a

a

So what?
We can convert regular expressions to nondeterministic finite automata,

and then to deterministic finite automata

Simultaneously traverse all possibilities at each “step” of the NFA

Each set of destination states for these possibilities is called the ε-
closure

Every ε-closure is one node in the corresponding DFA

Partial Example

1

2 3

15
14

4

9

i

f

ε

ε

ε

any character

(abridged NFA)

keyword: if

invalid lexeme

ε-closure of {1} = {1, 4, 9, 14}

ε-closure of {1}

{1, 4, 9, 14}

ε-closure always contains
itself

states reachable without
consuming a token of the

input

Parsing

Context-Free Grammars
Describes a language using sets of productions

Each production follows the form:

symbol -> s1 s2 s3 … sn

Terminal
 Nonterminal

123

“Hello, world” expression

function

println

An Example Grammar

expression -> term;

term -> factor ((“+” | “-“) factor)*;

factor -> primary ((“*” | “/“) primary)*;

primary -> [0-9]+ | “(“ expression “)”;

5 * 6 / (3 + 3)

Predictive Parsing

Recursive Descent

expression -> term;

term -> factor ((“+” | “-“) factor)*;

factor -> primary ((“*” | “/“) primary)*;

primary -> [0-9]+ | “(“ expression “)”;

5 * 6 / (3 + 3)
primary * 6 / (3 + 3)
primary * primary / (3 + 3)

primary * primary / (term)
primary * primary / primary

factor
expression

primary * primary / (primary + primary)

Predictive Parsing

Limitations

Cannot parse grammars that use left recursion or
when two productions for the same nonterminal

start with the same symbols

E -> E “+” T;

E -> T;

S -> “if” E “then” S “else” S;

S -> “if” E “then” S;

Eliminating Left Recursion
E -> E “+” num;

E -> num;

Rewrite using right recursion

E -> num E’;

E’ -> “+” num E’;

E’ -> ;

Left Factoring

Create another nonterminal, X

S -> “if” E “then” S X;

X -> “else” S;

X -> ;

S -> “if” E “then” S “else” S;

S -> “if” E “then” S;

LR Parsing
Left-to-right parse with a rightmost-derivation

Shift and reduce are the primary actions

Has a stack and an input

Shift: Advance the input one token and
push that token onto the stack

Reduce: Pop the stack as many times as
the number of symbols on the right-hand
side of a production rule

LR Parsing
A deterministic finite automata is applied to the stack to

determine when to shift and when to reduce

The edges of the DFA are labeled by the symbols that
can appear on the stack

The transitions between edges can be modeled by a
simple table

(1) S -> S “;”

(2) S -> id “:=“ E;

..

(5) E -> num

Parse Table
id num ; := S E

1 s4 g2

4 s6

6 s20 s10 g11

10 r5

11 r2

Based on DFA: numbers represent DFA state numbersa := 7;

Stack Input Action

id
:=

num

shift
:= 7; shift

id 7; shift
:=id ; reduce E -> num

E:=id ; reduce S -> id “:=“ E

DFA: Stack

id :=
num

E

S -> id “:=“ E

E -> num

Interlude

Now what?
During parsing, we convert the lexemes to an

Abstract Syntax Tree (AST)

Each nonterminal of a grammar corresponds to a
node type

Using this tree we can more easily perform:

Type checking

Translation to an
intermediate
representation

A (re)Introduction to Visitors
Incredibly useful for many semantic analysis

phases, including type checking

Or just use a language with good enums like Rust

Each AST node type implements two methods:

accept()

visit()

i.e. type checking:

left.accept(this).type == right.accept(this).type

Intermediate Representation (IR)
A machine-independent abstraction for assembly

Simplifies the process for converting the recursive
AST into a more machine-friendly format

Examples of IR nodes:

MOVE(src, dest) JUMP(label) CJUMP(trueLabel, falseLabel)

SEQ(left, right) TEMP(name)BINARY(op, left, right)

ESEQ(stmt, exp)

ESEQ?

Execute stmt, then evaluate and return exp

ESEQ(stmt, exp)

Wait, this violates assembly’s linearity!

Simplifies translation to IR, can clean it up later

def id(x):

 return x

y = id(5 + 5)

MOVE(t2, ESEQ(MOVE(t1, CALL(BINARY(Add,
5 + 5)))), t1))

Eliminating ESEQ
Recursively pull all ESEQ nodes out of the tree

Replace ESEQ node with its expression

MOVE(t2, ESEQ(MOVE(t1,CALL(BINARY(Add,
5 + 5)))), t1))

MOVE(t1,CALL(BINARY(Add, 5 + 5))))

MOVE(t2, t1)

Instruction Selection
For each IR node, we recursively generate

assembly instructions, starting with the most
deeply nested

MOVE(t1,CALL(BINARY(Add, 5 + 5))))

MOVE(t2, t1)

mov t1, 5

mov t2, 5 1

add t1,t2

mov t1, %rdi

call

mov %rax, t1

mov t1, t2

1 extra move instructions can be cleaned up by register allocator

Blocks and Traces

What about control flow?

We convert the linear list of statements into a set
of blocks, and then arrange those blocks into

traces

Blocks are always entered at the beginning and
exited at the end

Traces are used to optimize control flow (more
details on this later)

Blocks

A block is a sequence of statements where:

The first statement is a LABEL

The last statement is either a JUMP or CJUMP

Each of these must occur at most one time

Generating Blocks

Starting with the first statement, when a LABEL is
found, start a new block

Whenever a JUMP or CJUMP is found, the current
block is ended

If any block does not end with a JUMP or CJUMP,
add a JUMP to the next block’s label

If any block has no LABEL, create a new one for it

Example

Color-coded blocks

.main:

mov t1,5

mov t2,6

jmp .L1 if t1 < t2 else .L2

.L2

sub t1,t2

jmp .L3

.L1

add t1,t2

jmp .L3

.L3

call printf t1

jmp main.epilogue

How do we order these?

Generating Traces

Start with some initial block, and follow a possible
execution path (the rest of the trace)

Repeat until all blocks are associated with one
trace

For any blocks which end with an unconditional
jump and are followed by the target label, remove

the jump

Add all blocks to a list, Q

while Q is not empty:

 Start a new trace, T

 Remove the head element b from Q

 while b is not marked:

 Mark b

 Append b to the end of T

 for successor of b:

 if successor is not marked:

 b = c
 End T

Example

Traces.main:

mov t1,5

mov t2,6

jmp .L1 if t1 < t2 else .L2

 .L2

 sub t1,t2

 jmp .L3

.L1

add t1,t2

jmp .L3

 .L3

 call printf t1

 jmp main.epilogue

Trace #1

Trace #2

Liveness Analysis

What is liveness?
For a given variable, it is live if its current value

will be used in the future

We can calculate the live range of a particular
variable by starting at a use of a variable and

searching backwards until that variable is defined

This can be done either one-variable-at-a-time or
using set equations

b = {2 -> 3, 3 -> 4}

a = {1 -> 2, 4 -> 5, 5 -> 2} b := a + 1

c := c + b

a := b * 2

a < N

a := 0

return c

1

2

3

4

5

6

Example

c = entire range

n -> m is (n, m]

Interference Graphs

a b c

a x

b x

c x x

How are control flow graphs created?

Based on breadth-first search

Start with a queue containing the index of the first
statement

For each statement, its “neighbors” are any
successor nodes

Add an edge between statement and each neighbor

Add neighbors to queue

b := a + 1

c := c + b

a := b * 2

a < N

a := 0

return c

1

2

3

4

5

6

Example Revisited

(5) is the only interesting node

Has two successors: 6 and 2

Project Challenges

Tooling Pitfalls

There are various ways to automate lexical analysis
and parsing for both LL(k) and LR(k) classes of

grammars

JavaCC
SableCC (Java)

pest (Rust)

Examples

Type-Checking

foo.bar.baz = 5;

Figure out whether bar exists on foo and what its
type is

Now that we know what bar’s type is, see if baz
exists, etc.

Straightforward concept, several small errors and
many cases to handle

What if bar is a function?

Repetitive Analysis

foo.bar.baz = 5;

It’s useful to know what these types are in future
phases

We don’t want to recompute every time

Initially was not saving results of type-checking
phase which complicated future phases

How do we eliminate abstractions?

High-level concepts difficult to translate to
something compilable

Classes or structs may have nested fields, but stack
frames are linear

Solution: flatten structs

ESEQ and its myriad issues

Unresolved Questions:

Scope of Program Input

What is the class of valid programs?

Where are the edge cases?

How do I adequately test algorithms on many
different inputs?

Thanks for listening

