A (Very) Brief Survey of Compiler
Design

Independent Study
Sydney Newmark






Materials

Source: Modern Compiler Implementation in
Java, by Andrew W. Appel and Jens Palsberg

Frontend Backend
' Lexical Analysis ® Activation Records
- Parsing @ Blocks
Abstract Syntax Trees @ Traces
' Semantic Analysis @ Liveness Analysis

IR @ Register Allocation



Focus

Frontend Backend
' Lexical Analysis @ Activation Records
~ Parsing @ Blocks
' Abstract Syntax Trees @ Traces
' Semantic Analysis @ Liveness Analysis

IR .






Ml

&

g




Regular Expressions

Represent sets of strings

Symbol, Alternation, Concatenation, Epsilon, Repetition (Kleene closure)
(0 | 1)*x - 0O

Kleene closure: For some reqular expression, M, its Kleene closure is M*, the
concatenation of zero or more strings in M



Even Binary Numbers

00000010 (4)
10000000 (128)

Sequence of zero or Concatenate this

more "@"s and "1°s in sequence with a single
any combination 0




Finite Automata

A way to formalize regular expressions so they can be implemented by a
computer

Consist of states, edges, and symbols

[0-O]+

(+ denotes repetition of one or more times)

. 9 2 s
8
/3 e
~
{ -
A\
> A
R
N —-—
& )
.
;
N ~
3 3
b /)
.
%
.
) |




Deterministic Finite Automata

We can combine automata to create a lexical analyzer

The goal is fo find the longest match; i.e. the longest substring of the input that is a valid token




Nondeterministic Finite Automata

An automata which has a choice of edges labeled with the same symbol
to flow from the current state

strings of a
Tk g I whose length is
: even

whose length iIs
a multiple of 3



So what?

We can convert regular expressions to nondeterministic finite automata,
and then to deterministic finite automata

@ Simultaneously traverse all possibilities at each “step” of the NFA

@ Each set of destination states for these possibilities is called the ¢-
closure

@ Every e-closure is one node in the corresponding DFA



Partial Example

keyword: it

¥ (abridged NFA)

e-closure of {1} = {1, 4, 9, 14%

invalid lexeme



e-closure of 31%

11, 4, 9, 14;

states reachable without
consuming a token of the
input

c-closure always contains
itself






Context-Free Grammars

Describes a language using setfs of productions
Each production follows the form:

symbol — s1 S2 S3 .. Sp

Terminal Nonterminal
“Hello, world” expression
193 function

println



An Example Grammar

expression — term;
term — facter ((“+" | “-") factoxr)x;
5 % 6 f+H3 % 3)

factor — primaxry ((“x" | “/") primary)x*;

primary — [0-9]+ | “(" expression “)";



expression — term;

term — factor ((“+” | “-") factor)x; pred | C'I' | Ve Pa rS| n g

factor = praimaxy: (&5 & 0 primary)+;

Recursive Descent

C % 6 / (3+3)

primary * 6 / (3 + 3)
primary * primary / (3 + 3)

primary — [0-9]+ | “(" expression ")”;

primary * primary / (primary + primary)
primary * primary / (term)
primary * primary / primary
factor
expression



Predictive Parsing

Limitations

Cannot parse grammars that use left recursion or
when two productions for the same nonterminal
start with the same symbols

5 = fafvaap ithen” S "else’ S¢

S — “if” E “then” S;



Eliminating Left Recursion

E—=F "+ hum;
E — num;
Rewrite using right recursion
E — Bum E;
E' —= """ num E';

E! = ;

]



Left Factoring

S.=="""i i E Ekhan™ S "else”™ §;

S Jart iR then ' 5

Create another nonterminal, X
S = “if” E "then” S X;
X — elser 5

Riet



LR Parsing

Left-to-right parse with a rightmost-derivation

Shift and reduce are the primary actions

Has a stack and an input

Shift: Advance the input one ftoken and
push that token onto the stack

Reduce: Pop the stack as many times as
the number of symbols on the right-hand
side of a production rule



LR Parsing

A deterministic finite automata is applied to the stack to
determine when to shift and when to reduce

The edges of the DFA are labeled by the symbols that
can appear on the stack

The transitions between edges can be modeled by a
simple table



(1) S _> S ll;"

(2) .5 = 1@ === E;W
(5) E = num
Stack Input
dii=ad -
1d = o S
1 1 13
1d = num ;
160 = F '

reduce E — num
reduce S — 1d

[}

el 7 |

S h iF-I- Based on DFA: numbers represent DFA state numbers

E




PEA: Staeki® -







Now what?

During parsing, we convert the lexemes to an
Abstract Syntax Tree (AST)

Each nonterminal of a grammar corresponds fo a
node type

Using this tree we can more easily perform:

@ Type checking

@ Translation to an
intermediate
representation



A (re)Introduction to Visitors

Incredibly useful for many semantic analysis
phases, including type checking

Each AST node type implements two methods:
@ accept()

@ visit()

l.e. type checking:

left.accept(this).type = right.accept(this).type



Intermediate Representation (IR)

A machine-independent abstraction for assembly

Simplifies the process for converting the recursive
AST into a more machine-friendly format

Examples of IR nodes:
MOVE (src, dest) JUMP(label) CJUMP(truelLabel, falselLabel)
BINARY (op, left, right) SEQ(left, right) TEMP(name)
ESEQ(stmt, exp)



ESEQ?

ESEQ(stmt, exp)

Execute stmt, then evaluate and return exp

1d(x) :

MOVE (t2, ESEQ(MOVE(t1, CALL (BINARY (Add,
9@+ 5))) ) tay

X

Wait, this violates assembly’s linearity!

Simplifies translation to IR, can clean it up later



Eliminating ESEQ
Recursively pull all ESEQ nodes out of the tree

Replace ESEQ node with its expression

MOVE (t2, ESEQ(MOVE (t1,CALL (BINARY (Add,
5%% 5)))) . t138

MOVE (t1, CALL (BINARY(Add, 5 + 5))))

MOVE (t2, t1)



Instruction Selection

For each IR node, we recursively generate
assembly instructions, starting with the most
deeply nested

MOVE (t1, CALL (BINARY(Add, 5 + 5))))

MOVE (t2, t1)

l extra move instructions can be cleaned up by register allocator

mov tl1, 5
mov t2, G
add ti1,t2
mov ti1, %rdi
call

mov %rax, tl

mov tl, tZ2

1






What about control flow?

We convert the linear list of statements into a set
of blocks, and then arrange those blocks into
traces

Blocks are always entered at the beginning and
exited at the end

Traces are used to optimize control flow (more
details on this later)



Blocks

A block is a sequence of statements where:
® The first statement is a LABEL

@ The last statement is either a JUMP or CJUMP

@ Each of these must occur at most one time




Generating Blocks

Starting with the first statement, when a LABEL is
found, start a new block

Whenever a JUMP or CJUMP is found, the current
block is ended

If any block does not end with a JUMP or CTJUMP,
add a JUMP to the next blocks label

If any block has no LABEL, create a new one for it



.main:

mov t1,5

mov t2,6

Jmp L1 IF tl < t2. elsEisl?

o C

cakl spramtt 1

Jmp mailn.epilogue

Example

Color-coded blocks

e 2
add t1,t2 sub ti1,t2
Jmp .L3 jmp .L3

How do we order these?



Generating Traces

Start with some initial block, and follow a possible
execution path (the rest of the trace)

Repeat until all blocks are associated with one
trace

For any blocks which end with an unconditional
jump and are followed by the target label, remove
the jump



Add all blocks to a 1list, Q

while Q 1s not empty:

Start a new trace, T

Remove the head element b from Q

while b 1s not marked:

Mark b

Append b to the end of T

for successor of b:

1f successor 1s not marked:

End T



T L

N

f t1 < t2

i

t(tl)

prin

.

ERls

>
* ansy, [

logue

jmp main.epi

]

&

in

x

call px







What 1s liveness?

For a given variable, it is live if its current value
will be used in the future

We can calculate the live range of a particular
variable by starting at a use of a variable and
searching backwards until that variable is defined

This can be done either one-variable-at-a-time or
using set equations



Example

aveE SR v s v h TS g CF
b = 2o 8803 > 4%

Cc = entlire range

6 return c
n > mis (n, mj



Interference Graphs

a b C
a X
b X

.....................................................................................................................................................................................................................




How are control flow graphs created?

Based on breadth-first search

Start with a queue containing the index of the first
statement

For each statement, its "neighbors” are any
successor nodes

Add an edge between statement and each neighbor

Add neighbors to queue



Example Revisited

1 =)
2  Hb

(5) is the only interesting node
3 BG

Has two successors: 6 and 2

6 return c



Project Challenges



Tooling Pitfalls

There are various ways to automate lexical analysis
and parsing for both LL(k) and LR(k) classes of
grammars

Examples

JavaCC
SableCC (Java)

pest (Rust)



Type-Checking

foo.bar.baz = 5;

Figure out whether bar exists on foo and what its
type Is

Now that we know what bars type is, see if baz
exists, etc.

Straightforward concept, several small errors and
many cases to handle

What if baxr is a function?



Repeftitive Analysis

foo.bar.baz = 5;

Its useful to know what these types are in future
phases

We dont want to recompute every time

Initially was not saving results of type-checking
phase which complicated future phases



How do we eliminate abstractions?

High-level concepts difficult to translate to
something compilable

Classes or structs may have nested fields, but stack
frames are linear

Solution: flatten structs

ESEQ and its myriad issues



Unresolved Questions:
Scope of Program Input

What is the class of valid programs?

Where are the edge cases?

How do I adequately test algorithms on many
different inputs?






