Compiler Design

Transformations of programs into executables; and: implementing
features of object-oriented programming

Sydney Newmark
Independent Study

Contents

1. Assembly conventions

2. Register allocation

3. Modular code generation

4a. Garbage collection

4b. Supporting object-oriented concepts
5. Demo

6. Reflection

1. Assembly conventions

not knowing intricacies of operating system conventions beforehand caused me great pain and probably hours of extra work 3

x86 64 and ARMG64

A brief introduction

* two widely used processor architectures

« CISC vs. RISC

 many complex, specific instructions to perform certain tasks in minimal
assembly instructions

e specific complex tasks comprise of multiple foundational instructions

* initially the compiler was written for x86_64 but later switched to ARM

Reg In[7] Reg In[6] Reg In[5] Reg_In[4] Reg_In[3] Reg_In[2] Reg_In[1] Reg_In[0]

8
B 8
Enable Reg_Out

Register organization

| I I I I | I |
Reg Out[7] Reg Out[6] Reg Out[5] Reg Out[4] Reg Out[3] Reg Out[2] Reg Out[l] Reg_ Out[0]

 thirty-one 64-bit general-purpose registers (x0, x1, ..., x30)
* pbottom halves accessible with the w prefix
* by convention, x29 is the frame pointer
e X30 is the link register

* one dedicated stack pointer (sp) or zero register (xzr)

Increasing address

29 |
What is a frame, anyway? tack_base —m
|
» to reserve NV - w bytes of memory, where: frame
Active stack memory
» N is the amount of “numbers” to store
. . : |
* wis the word size of the arch (usually eight :
. —> /
bits) \
'l
 “align” (round up) to next multiple of 16 Free stack memory
(Accesses here are
o Offsets from x29 are aIWayS pOSitive — ‘ forbidden and unsafe
* creating frames decreases the stack pointer and .o imt — /
cleaning up frames increases stack pointer -

6

PC and LR

Navigating programs and finding home

A T 0 070 e 006 D6 sl ela o Sl
MECNMOR REGISTE®

v I+ elw - = e sslor e sl = m]se se bl
|~; » S Tw e - " _4:- - - : ‘» ”I. : I:‘\ M- - - - ~~ <~ ; —~ 4
R e Sloe Clet e s oot oo ST CL LSS SR el

IR ITo o0 Poeondondbsdoobo 9000509
"‘) ; b /4 u\lu\?‘Y'Llﬁ'QUC’IlI" mECr13TEN

* program is laid out Iin sequential bytes in memory W st

ttttt NCTION COUnNTEN

e pc (program counter) controls the currently
executing instruction

e the link register (x30 in A64) points to the next
instruction after a particular subroutine returns

LR is more efficient particularly in the case of leaf .
SU brO Utl neS An IBM 701 because | could’t find a useful diagram

(the program counter is in the lower left)

Calling conventions

Callee-save? Caller-save?

def foo():
* problem: what if two functions want to use the same set of

registers? bar ()
e callee: the subroutine being called (i.e. some function or method)
def baxr():

e caller: the subroutine calling a function
* callee-save: registers to be saved by the callee if used by callee PASS

e caller-save: registers to be saved by the caller if used after the
callee returns

foo ()

In x86: r12, r13, r14, r15, rbx, rsp, rbp In A64: x19-x28

Parameters

Providing subroutines with data

By convention:

 X0-x7 are argument registers for “normal” 64-
bit integers

» X0 doubles as the register which contains the ~destination

;i
return value \

» vector data and floating-point data use I
separate conventions /

bl _println

/

‘named subroutin

9

Example

A working function prologue

reservestai sub sp, sp, #112

“save LR and | stp x29, x30, Lsp, #-16]!

| add X29, sp, #16

~ save callee-save | str x19, [x29, #8]

registers %

I

store registers in stack

frame
10

Example

A working function epilogue

' recover callee-

savedregisters | 1T x19, [x29, #8]

' recover LR and

stack pointer | ldp x29, x30, [sp], #16

| add sp, sp, #112

release stack region

ret

11

2. Register allocation

Problem: too many temporaries
T877?7?

 temporary: a placeholder name denoting a
variable being stored in a register

* finite number of registers (~30) and
potentially hundreds of temporaries

» useful observation: the “lifetime” of most of
these temporaries never overlap

» analysis useful to determine lifetimes of
temporaries and which lifetimes interfere

13

T3
T3
T3
T16
T16, |[T3

Graphing control flow

to discover where the data flow

* figure out where uses and definitions of
temporaries are

e backtrace from each use to each
definition to determine lifetimes

e each backtrace is the lifetime of a
temporary

 when backtraces overlap, temporaries
interfere

14

Register interference
x19 can’t hold all the werld’s program’s data variables

T3 cannot use the same register as either
or T16 because both are in use at the
same time

e however, and T16 can use the same
register because their live ranges do not
overlap

e also called liveness analysis

e alternatively: use dataflow equations
(complicated)

15

Coloring

no, there aren’t actually colors

a simple approach:

 [terate through each statement

* for each temporary live at that statement:
* If no color assigned:

* determine which registers have been
assigned to temporaries which interfere
with the current one

* pick a register that isn’t in the above set

16

Simplify, Spill, Select

A principled coloring mechanism

* Simplify: repeatedly remove (and push onto a stack)

nodes of degree less than K from a graph G, decreasing
the degrees of other nodes and creating more
opportunity for simplification

« Spill: if graph G containing nodes (instructions) contains
only nodes of degree K then Simplify fails

 mark a node for representation in memory rather than
a reqgister

» Select: assign colors to each node, rebuilding the
original graph by adding a node from the top of the stack

17

Example
Simplify, Spill, Select

interference graph

18

Example

Simplify, Spill, Select

interference graph "

Example
Simplify, Spill, Select

interference graph

20

Example
Simplify, Spill, Select

interference graph

21

Example
Simplify, Spill, Select

interference graph

22

Example

Simplify, Spill, Select

23

interference graph

3. Modular code generation

So many architectures
Iit’s good to be lazy efficient

» different architectures have different ways of

doing things ?

e X806 Instructions tend to do more than their A4 m
counterparts

e what instructions are allowed? ?

* what arguments are allowed for those
instructions?

 what are the equivalents from one platform to the
other?

25

A load/store architecture

Idr and str

 unlike x86, ARM Iinstructions
normally only operate on registers

* data are loaded from memory,
operated on in registers, and then
stored to memory

e direct translation from x86 to ARM
mnemonics and instruction syntax
iInsufficient

* SOme processes (accessing/moving
around pointers to strings) are
handled differently

Address

PC

Program

Memory

rO

rl

r2

Rm or Immediate

r3

26

Rd (dest)
Rt (value to
mem)

Rd

r4

rS

re

r/

Rt (value to save to

m

emo

ALU

ry

A

H\W
4/5/ |

 —

Value from ALl

Data
Memory

Value from memory

4a. Garbage collection

COpylng C()"ection from-space to-space

e scan the necessary portion of stack to find
pointers to valid records

* breadth first copying: iterate through each
of these pointers and shallowly forward it to
to-space

* keep track of fields with pointers to a record,
and after all shallow forwards, update these
field pointers to point to to-space

* poor locality of reference alleviated by
Cheney’s algorithm

08 order of copy after scanning:

Reference counting

instead of finding what is reachable, instead keep track
of how many pointers point to a record; this is called a

reference count (r)

when r is zero, put the record on the free list and
decrement the reference count of everything that
pointed to that record

e can cause memory leaks because cycles cannot be
reclaimed

 if two records mutually point to each other, the
reference counts will never be zero even if neither
record IS accessible

e expensive in terms of instructions required (mitigated
somewhat by dataflow analysis)

29

Esngee 2.5 Circular List Structure.

cycle shown in blue

Mark-and-sweep collection heap space after sweep

« mark phase and sweep phase scan p’

 mark phase: for each root pointer, perform depth-
first search to mark all reachable records

 sweep phase: scan the entire heap looking for
unmarked (garbage) nodes; link these nodes
together in a linked list (also known as freelist)

 unmark all previously marked nodes to prepare
for next garbage collection

free space

* time complexity:

 DFS takes time proportional to the amount of p2
reachable data

 sweep phase takes time proportional to the size
of the heap

"0 marked reachable nodes shown as

Generational collection =| / //% i/

i 7 m " o : :
* objects still reachable after a long period of time will i Z/"///i/w'w M
probably survive for many more collections Vourg objects Object Lifetime d objects

* newly created objects likely to die soon

e concentrate efforts on “young” data Distribution of object lifetimes

* known as generations

(5, contains youngest and every object in each successive

generation is older than any object in the previous
generation

* rare for older object to point to younger object;
common for younger object to point to older object

* immediate field initialization (those values are
necessarily older than the newly created object)

* can keep track of this rare occurrence in several ways

31

Incremental collection

* three “colors” to denote the status of an object
* nodes unvisited by depth-first or breadth-first search are white

 visited (i.e. marked or copied) nodes whose children have not been
examined are gray

* visited nodes whose children have also been marked are black
* when there are no gray objects, all white objects must be garbage
* two invariants:

1. no black object points to a white object

2. every gray object is in the collector’s data structure (stack/
queue) to be scanned

* write-barrier and read-barrier techniques to preserve invariants

 example: whenever a program stores a white pointer a into a
black object b, it colors b gray

32

4b. Supporting object-oriented
concepts

Class descriptors

Runtime method and field layout

e garbage collection requires the runtime know which
flelds are pointers and which are non-pointers
(integers, floating-point, constant strings)

« field descriptor: a string of 1 (non-pointer) and p
(pointer)

 first char in string corresponds to the type of the
first field, and so on

 method descriptor. an array where each element
corresponds to the address (i.e. assembly subroutine
label) which is “active” for a particular class variable

34

class Foo<T: Print>: Print {
val: T

fun print(self) 1
self.val.print();

£
%

class Bar: Print {
X: 1nt

fun print(self) 1

println_int(self.x);

5

Foo Bar
‘ Foo.print \ ‘ Bar.print \

Field Prefixing

(Single) Inheritance and Generics

 all fields of a child class are placed after the fields of the parent class in a record

» casting allowed because accessing any field on a Foo-typed variable is valid even if the
underlying type is Bar

» (Generics are very similar to casting

* |.e. every instance of some type T has the same underlying structure

Field Layout _ _
Y class Foo(int x, 1int v)

class Bar(int 2z)
extends Foo

i
D e

35

Method Prefixing

(Single) Inheritance and Generics

* each element in the method descriptor array
corresponds to an address of an assembly
label for the appropriate method

class Foo(int print(), void
doSomething())

- class Baxr(int print(), void
 dynamic dispatch: fetch the address from doSomething(), void

the method descriptor array and jump to doSomethingElse()) extends Foo
that address

Method Descriptors

Bar Bar.doSomething Bar.doSomethingElse
36

}

/. @ ~[D/a/kyanite

A result/bin/kyanite run examples/kyir/fibonacci.kyal

38

6. Reflection

Materials / References

e Rust Aho, Alfred V, et al. Compilers: Principles,
Techniques, and Tools. India, Pearson India
Education Services, 2015 (dragon book
+ LLVM (clang) (drag)
* Appel, Andrew W, and Jens Palsberg. Modern
e Nix (bui|d & developer Compiler Implementation in Java. Cambridge,
environment) Uk; New York, Ny, Usa, Cambridge University
Press, 2002
* formerly: « ARM developer documentation @ https://

developer.arm.com

» Zig (cross-compilation) Stack Overflow

 Compiler Explorer @ https://godbolt.org

e e|lsewhere on the internet

40

https://developer.arm.com
https://developer.arm.com
https://developer.arm.com
https://developer.arm.com
https://godbolt.org

Reflection

first semester went smoothly except for switching
implementation languages halfway through because |
wasn’t comfortable enough with Kotlin (my original
choice — because my primary reference textbook
used Java) and | already had a toy Rust compiler
from the summer | could modify instead

e didn’t lose much time on this

lost a lot of time trying to figure out what operating
system/assembly conventions were

 a lot of trial and error to figure out what works and
importantly, why does it work

lots of looking at what existing compilers (gcc, clang)
are doing and understanding what and why they emit
certain instructions

 now | can actually read assembly somewhat

discovered how to use lidb for debugging
segmentation faults, etc.

41

* In the first half of the semester | was printing
instructions to figure out where important data
was being unintentionally overwritten

* this is mostly avoided later because
segmentation faults usually coincided with
places where | accidentally overwrote data

 name variables properly (lost time trying to figure out

what my own garbage collection algorithms were
doing); and lots of messy pointer arithmetic made it
even more tedious and painful

e on arelated note: comment code more

* my first “large” project and not commenting
what | was doing caused some problems later
on when | needed to figure out what something
was doing

new computer made it cumbersome to test x86
executables so | switched to ARM in the middle of
the second semester

Takeaways

» use familiar languages/tooling * follow programming conventions
(descriptive variable naming,
* |earn basics before diving into commenting code)

Implementation

* switching technologies causes time
* |look at what other things are doing losses

and understand why

* |learn and use a proper debugger to
save time

» segfaults are even more painful in
assembly than C/C++

42

Thanks for listening!

