
Sydney Newmark
Independent Study

Compiler Design
Transformations of programs into executables; and: implementing
features of object-oriented programming

1

Contents
1. Assembly conventions

2. Register allocation

3. Modular code generation

4a. Garbage collection

4b. Supporting object-oriented concepts

5. Demo

6. Reflection
2

1. Assembly conventions

not knowing intricacies of operating system conventions beforehand caused me great pain and probably hours of extra work 3

x86_64 and ARM64
A brief introduction

• two widely used processor architectures

• CISC vs. RISC

• many complex, specific instructions to perform certain tasks in minimal
assembly instructions

• specific complex tasks comprise of multiple foundational instructions

• initially the compiler was written for x86_64 but later switched to ARM

4

ARM64
Register organization

• thirty-one 64-bit general-purpose registers (x0, x1, …, x30)

• bottom halves accessible with the w prefix

• by convention, x29 is the frame pointer

• x30 is the link register

• one dedicated stack pointer (sp) or zero register (xzr)

5

x29
What is a frame, anyway?

• to reserve bytes of memory, where:

• is the amount of “numbers” to store

• is the word size of the arch (usually eight
bits)

• “align” (round up) to next multiple of

• offsets from x29 are always positive

• creating frames decreases the stack pointer and
cleaning up frames increases stack pointer

N ⋅ w

N

w

16

frame

6

PC and LR
Navigating programs and finding home

• program is laid out in sequential bytes in memory

• pc (program counter) controls the currently
executing instruction

• the link register (x30 in A64) points to the next
instruction after a particular subroutine returns

• LR is more efficient particularly in the case of leaf
subroutines An IBM 701 because I could’t find a useful diagram

(the program counter is in the lower left)

7

Calling conventions
Callee-save? Caller-save?

• problem: what if two functions want to use the same set of
registers?

• callee: the subroutine being called (i.e. some function or method)

• caller: the subroutine calling a function

• callee-save: registers to be saved by the callee if used by callee

• caller-save: registers to be saved by the caller if used after the
callee returns

In x86: r12, r13, r14, r15, rbx, rsp, rbp
 In A64: x19-x28

def foo():

bar()

def bar():

pass

foo()

8

Parameters
Providing subroutines with data

By convention:

• x0-x7 are argument registers for “normal” 64-
bit integers

• x0 doubles as the register which contains the
return value

• vector data and floating-point data use
separate conventions mov x0, T1

bl _println

destination register

source register

named subroutine
9

Example
A working function prologue

sub sp, sp, #112

stp x29, x30, [sp, #-16]!

add x29, sp, #16

str x19, [x29, #8]

reserve stack region

save LR and stack
pointer

save callee-save
registers

store registers in stack
frame

10

Example
A working function epilogue

ldr x19, [x29, #8]

ldp x29, x30, [sp], #16

add sp, sp, #112

ret

release stack region

recover callee-
saved registers

recover LR and
stack pointer

11

2. Register allocation

12

Problem: too many temporaries
T87??

• temporary: a placeholder name denoting a
variable being stored in a register

• finite number of registers (~30) and
potentially hundreds of temporaries

• useful observation: the “lifetime” of most of
these temporaries never overlap

• analysis useful to determine lifetimes of
temporaries and which lifetimes interfere

mov T3, T14

str T2, [T3, #8]

mov T15, #1

str T15, [T3, #16]

mov T16, #2

str T16, [T3, #24]

13

Graphing control flow
to discover where the data flow

• figure out where uses and definitions of
temporaries are

• backtrace from each use to each
definition to determine lifetimes

• each backtrace is the lifetime of a
temporary

• when backtraces overlap, temporaries
interfere

mov T3, T14

str T2, [T3, #8]

mov T15, #1

str T15, [T3, #16]

mov T16, #2

str T16, [T3, #24]

14

Register interference
x19 can’t hold all the world’s program’s data variables

• T3 cannot use the same register as either
T15 or T16 because both are in use at the
same time

• however, T15 and T16 can use the same
register because their live ranges do not
overlap

• also called liveness analysis

• alternatively: use dataflow equations
(complicated)

mov T3, T14

str T2, [T3, #8]

mov T15, #1

str T15, [T3, #16]

mov T16, #2

str T16, [T3, #24]

15

Coloring
no, there aren’t actually colors

mov T3, T14

str T2, [T3, #8]

mov T15, #1

str T15, [T3, #16]

mov T16, #2

str T16, [T3, #24]

a simple approach:

• iterate through each statement

• for each temporary live at that statement:

• if no color assigned:

• determine which registers have been
assigned to temporaries which interfere
with the current one

• pick a register that isn’t in the above set

16

• Simplify: repeatedly remove (and push onto a stack)
nodes of degree less than from a graph , decreasing
the degrees of other nodes and creating more
opportunity for simplification

• Spill: if graph containing nodes (instructions) contains
only nodes of degree then Simplify fails

• mark a node for representation in memory rather than
a register

• Select: assign colors to each node, rebuilding the
original graph by adding a node from the top of the stack

K G

G
K

Simplify, Spill, Select
A principled coloring mechanism

17

Example
Simplify, Spill, Select

j

k

h
g

d

c

b
m

e

f

g

h

k

interference graph
18

Example
Simplify, Spill, Select

j
d

c

b
m

e

f

g

h

k

d

j

interference graph
19

Example
Simplify, Spill, Select

c

b
m

e

f

g

h

k

d

j

e

f

b

interference graph
20

Example
Simplify, Spill, Select

c

m

g

h

k

d

j

e

f

b

c

m

interference graph
21

Example
Simplify, Spill, Select

interference graph

g 4

h 2

k 1

d 4

j 3

e 4

f 2

b 2

c 3

m 1

j

k

h
g

d

c

b
m

e

f

22

Example
Simplify, Spill, Select

interference graph

g 4

h 2

k 1

d 4

j 3

e 4

f 2

b 2

c 3

m 1

j

k

h
g

d

c

b
m

e

f

23

3. Modular code generation

24

So many architectures
it’s good to be lazy efficient

• different architectures have different ways of
doing things

• x86 instructions tend to do more than their A64
counterparts

• what instructions are allowed?

• what arguments are allowed for those
instructions?

• what are the equivalents from one platform to the
other?

?
?

25

A load/store architecture
ldr and str

• unlike x86, ARM instructions
normally only operate on registers

• data are loaded from memory,
operated on in registers, and then
stored to memory

• direct translation from x86 to ARM
mnemonics and instruction syntax
insufficient

• some processes (accessing/moving
around pointers to strings) are
handled differently

26

4a. Garbage collection

27

Copying collection
• scan the necessary portion of stack to find

pointers to valid records

• breadth first copying: iterate through each
of these pointers and shallowly forward it to
to-space

• keep track of fields with pointers to a record,
and after all shallow forwards, update these
field pointers to point to to-space

• poor locality of reference alleviated by
Cheney’s algorithm

ip

5

“0x32000”

p

“0x40000”

i

17

i

17

ip

5

“0x32000”

p

“0x40000”

from-space to-space

p1 —>

order of copy after scanning: p3, p1, p2

p2 —>

p3 —>

28

Reference counting
• instead of finding what is reachable, instead keep track

of how many pointers point to a record; this is called a
reference count ()

• when is zero, put the record on the free list and
decrement the reference count of everything that
pointed to that record

• can cause memory leaks because cycles cannot be
reclaimed

• if two records mutually point to each other, the
reference counts will never be zero even if neither
record is accessible

• expensive in terms of instructions required (mitigated
somewhat by dataflow analysis)

r

r

cycle shown in blue
29

Mark-and-sweep collection
• mark phase and sweep phase

• mark phase: for each root pointer, perform depth-
first search to mark all reachable records

• sweep phase: scan the entire heap looking for
unmarked (garbage) nodes; link these nodes
together in a linked list (also known as freelist)

• unmark all previously marked nodes to prepare
for next garbage collection

• time complexity:

• DFS takes time proportional to the amount of
reachable data

• sweep phase takes time proportional to the size
of the heap

ip

5

“0x32000”

p

“0x40000”

i

17

ip

5

“0x32000”

i

17

heap space after sweep

fre
e

sp
ac

e

scan

marked reachable nodes shown as green

p1 —>

p2 —>

p3 —>p3 —>

30

Generational collection
• newly created objects likely to die soon

• objects still reachable after a long period of time will
probably survive for many more collections

• concentrate efforts on “young” data

• known as generations

• contains youngest and every object in each successive
generation is older than any object in the previous
generation

• rare for older object to point to younger object;
common for younger object to point to older object

• immediate field initialization (those values are
necessarily older than the newly created object)

• can keep track of this rare occurrence in several ways

G0

Distribution of object lifetimes

G0 G1

31

Incremental collection
• three “colors” to denote the status of an object

• nodes unvisited by depth-first or breadth-first search are white

• visited (i.e. marked or copied) nodes whose children have not been
examined are gray

• visited nodes whose children have also been marked are black

• when there are no gray objects, all white objects must be garbage

• two invariants:

1. no black object points to a white object

2. every gray object is in the collector’s data structure (stack/
queue) to be scanned

• write-barrier and read-barrier techniques to preserve invariants

• example: whenever a program stores a white pointer into a
black object , it colors gray

a
b b

32

4b. Supporting object-oriented
concepts

33

Class descriptors
Runtime method and field layout

• garbage collection requires the runtime know which
fields are pointers and which are non-pointers
(integers, floating-point, constant strings)

• field descriptor: a string of (non-pointer) and
(pointer)

• first char in string corresponds to the type of the
first field, and so on

• method descriptor: an array where each element
corresponds to the address (i.e. assembly subroutine
label) which is “active” for a particular class variable

i p

p

Foo

Foo.print

i

Bar

Bar.print

34

Field Prefixing
(Single) Inheritance and Generics

class Foo(int x, int y)

class Bar(int z)
extends Foo

x y z

Field Layout

x yFoo

Bar

• all fields of a child class are placed after the fields of the parent class in a record

• casting allowed because accessing any field on a Foo-typed variable is valid even if the
underlying type is Bar

• Generics are very similar to casting

• i.e. every instance of some type T has the same underlying structure

i i

i i i
35

Method Prefixing
(Single) Inheritance and Generics

class Foo(int print(), void
doSomething())

class Bar(int print(), void
doSomething(), void
doSomethingElse()) extends Foo

Bar.print Bar.doSomething Bar.doSomethingElse

Method Descriptors

Foo.print Foo.doSomethingFoo

Bar

• each element in the method descriptor array
corresponds to an address of an assembly
label for the appropriate method

• dynamic dispatch: fetch the address from
the method descriptor array and jump to
that address

36

5. Demo

37

38

6. Reflection

39

• Rust

• LLVM (clang)

• Nix (build & developer
environment)

• formerly:

• Zig (cross-compilation)

Materials / References

• Aho, Alfred V, et al. Compilers: Principles,
Techniques, and Tools. India, Pearson India
Education Services, 2015 (dragon book)

• Appel, Andrew W, and Jens Palsberg. Modern
Compiler Implementation in Java. Cambridge,
Uk; New York, Ny, Usa, Cambridge University
Press, 2002

• ARM developer documentation @ https://
developer.arm.com

• Stack Overflow

• Compiler Explorer @ https://godbolt.org

• elsewhere on the internet
40

https://developer.arm.com
https://developer.arm.com
https://developer.arm.com
https://developer.arm.com
https://godbolt.org

• first semester went smoothly except for switching
implementation languages halfway through because I
wasn’t comfortable enough with Kotlin (my original
choice — because my primary reference textbook
used Java) and I already had a toy Rust compiler
from the summer I could modify instead

• didn’t lose much time on this

• lost a lot of time trying to figure out what operating
system/assembly conventions were

• a lot of trial and error to figure out what works and
importantly, why does it work

• lots of looking at what existing compilers (gcc, clang)
are doing and understanding what and why they emit
certain instructions

• now I can actually read assembly somewhat

• discovered how to use lldb for debugging
segmentation faults, etc.

• in the first half of the semester I was printing
instructions to figure out where important data
was being unintentionally overwritten

• this is mostly avoided later because
segmentation faults usually coincided with
places where I accidentally overwrote data

• name variables properly (lost time trying to figure out
what my own garbage collection algorithms were
doing); and lots of messy pointer arithmetic made it
even more tedious and painful

• on a related note: comment code more

• my first “large” project and not commenting
what I was doing caused some problems later
on when I needed to figure out what something
was doing

• new computer made it cumbersome to test x86
executables so I switched to ARM in the middle of
the second semester

Reflection

41

Takeaways
• use familiar languages/tooling

• learn basics before diving into
implementation

• look at what other things are doing
and understand why

• learn and use a proper debugger to
save time

• segfaults are even more painful in
assembly than C/C++

• follow programming conventions
(descriptive variable naming,
commenting code)

• switching technologies causes time
losses

42

Thanks for listening!

43

