
Improving Transparency and Mitigating
Hallucinations in LLMs: A Survey

Sydney Newmark

September 30, 2024

1 Abstract

Large language models (LLMs) have impressive performance in parsing lan-
guage and generating natural-sounding responses. However, LLMs have sev-
eral problems related to the accuracy of those responses. They may “hal-
lucinate” (provide incorrect or irrelevant information), provide confidently
incorrect responses and explanations, and may not sufficiently explain their
reasoning. This paper explores existing solutions to these problems, such as
Chain-of-Thought prompting to improve explainability, calculations to mea-
sure uncertainty in responses (called “semantic uncertainty”), and Mixed-
contrastive Learning to reduce the generation of hallucinations. We then
combine several of these solutions in a proposal which modifies the struc-
ture of the GPT-series of models in an attempt to simultaneously reduce
hallucinations, use uncertainty in choosing LLM responses, and increase ex-
plainability.

2 Introduction

Generative artificial intelligence for text has been rapidly growing in popu-
larity during late 2022 and the early half of 2023, with ChatGPT receiving
one million users in just five days [1]. Other widely available models have
also entered the space, with Microsoft’s Bing Chat, based on GPT-4, launch-
ing, as well as Google Bard, which uses the PaLM 2 model. Large language
models have been widely praised for their ability to automate some tedious

1



writing tasks. Additionally, large language models have been implemented
in integrated development environments to provide LLM-assisted code com-
pletion through Microsoft’s GitHub Copilot, and for general queries typically
reserved for a traditional search engine, like Google.

Much of the work in natural language generation (e.g., GPT) has been
focused on producing models capable of generating realistic-sounding text,
with less emphasis put on whether a model’s responses are factually correct.
This proves to be a problem when users attempt to substitute a large lan-
guage model, like ChatGPT, for a traditional search engine. With no way
to verify that a model’s responses are accurate, they must resort to verifying
the results through other means, most likely through a traditional search
engine they were attempting to substitute. Tied to factual accuracy are hal-
lucinations, where a model assumes a piece of context that was not explicitly
provided to it by the user or says things that are factually incorrect. In
writing tasks, this may result in subtle incorrect information being included,
which the user may not review before using the model’s output.

This paper reviews existing methods for improving LLM accuracy, con-
veying uncertainty, and mitigating hallucinations. Drawing on our findings
in the literature, we then propose a set of modifications to the structure of
the GPT-series of models using CoT prompting, MixCL, and Mixture-of-
Experts, which may improve these qualities.

3 Related Work

Artificial intelligence has been defined as the intelligence of machines, which
can have many different sub-fields, including computer vision (self-driving
cars), search engines (Google), and generative or creative tools (ChatGPT,
Stable Diffusion). The latter category has been of particular note since Ope-
nAI’s release of ChatGPT as a public research preview on November 30,
2022. ChatGPT is a large language model (LLM) whose primary purpose
is to engage in conversations with human users based on the questions or
requests users provide to the model.

Prior to the advent of transformers, natural language processing tasks
widely employed a mechanism known as recurrent neural networks (RNNs).
An RNN is a method of processing input tokens (groupings of approximately
one word each) that suffers from notable drawbacks in the context of large
language models. RNNs process tokens sequentially, creating a state vector

2



(a sequence of tokens) containing the nth preceding tokens along with the
current token, n. Consequently, they suffer from something known as the
vanishing gradient problem, which describes the lack of precise information
about preceding tokens by the time processing of input has finished. This can
inhibit or completely prevent further training. The other notable drawback
of RNNs is that they are difficult to parallelize because of their sequential
nature. Parallelizability is a valuable property for improving performance in
neural networks, because an individual layer of the network can be computed
simultaneously. Transformers, on which modern LLMs such as ChatGPT are
based, provided an alternative framework for approaching the processing of
input sequences based on what is known as the attention mechanism. This
allows parallel processing of input sequences by linking an input token with
other related input tokens to capture structure and context that would have
been lost with a RNN approach.

As of July 2023, OpenAI and Google are the two primary companies with
accessible, consumer-facing chat programs based on transformer-backed large
language models. ChatGPT uses OpenAI’s GPT-3.5-turbo and GPT-4 mod-
els, while Google’s Bard uses the PaLM 2 model. LaMDA (Language Model
for Dialogue Applications), also produced by Google, is a conversational AI
model trained on dialogue and published in 2021. OpenAI’s GPT models
use a method called Reinforcement Learning with Human Feedback (RLHF)
to train, by which humans determine which kind of output texts are “good”
based on their interpretation of specific criteria. This is subsequently input
back into the unsupervised learning process, guiding the model to produce
more text similar to that which humans have declared good outputs. GPT-4
is also trained using RLHF, the main difference between it and both GPT-
3.5-turbo and Google’s two large language models being the use of a Mixture-
of-Experts (MoE) approach [6]. GPT-4 has eight expert models, each slightly
larger in parameter count than GPT-3.5-turbo, with each specialized for a
certain type of task. MoE works by taking the input text, giving it to each
of GPT-4’s expert models, and then employing a gating model to choose the
best answer produced by any of the experts [7]. The best answer will then
be provided to the user.

3



4 Explainability

Although LLMs are capable of creating natural-sounding text, how well an
LLM can explain itself (“explainability”) is vital to providing users with
more useful responses. Explainability measures the depth and specificity
of text produced by a LLM to explain how it arrived at an answer. As
an example of this measure, consider the statements in fig. 1. The output
in Standard Prompting receives a lower explainability score based on its
lack of supplemental text for the answer provided, while Chain-of-Thought
Prompting receives a higher score because it provides factually accurate
supplemental text to support the answer provided. Explainability is a crucial
element of LLM output because it allows a user to understand an LLM’s
reasoning. This is particularly of note when the only alternative is a black
box where a user is forced to either fact check the LLM or blindly trust its
response.

Figure 1: An example provided by Wei et. al. showing outputs with varying
degrees of explainability [9]

4.1 Chain-of-Thought Prompting

A method called Chain-of-Thought (CoT) prompting is a prompt engineering
technique that uses the model input to provide examples of the reasoning that
should be expected in outputs [9]. As shown in fig. 1, CoT reasoning is the
process by which an answer can be obtained; a thought process. In the CoT

4



output example, instead of only providing a single numerical answer, the
model produced additional details, such as intermediate steps.

This technique has had empirical gains in complex reasoning on tasks
including arithmetic, commonsense, and symbolic reasoning. This is a task
that had previously been unable to be achieved through merely scaling the
model size. While in-context few-shot learning via prompting has had suc-
cess in question-answer (QA) tasks, limitations arise when reasoning abil-
ities are required, and this cannot be trivially solved by increasing model
size. Fundamentally, CoT relies on a prompt split into three parts: input,
chain of thought, and output. By providing demonstrations of this process,
large language models can generate chains of thought. This approach led to
improved solve rates, i.e. accuracy, in arithmetic reasoning, common sense
reasoning, and symbolic reasoning tasks. The approach was tested on PaLM,
LaMDA, and GPT models. In the GSM8K benchmark, the strongest per-
forming model, PaLM, at 540B parameters, surpassed a solve score of 50%
using CoT prompting, while only reaching 20% without CoT prompting.
Improvements for all three models were comparable or negative at smaller
parameter counts, but improved upon non-CoT prompting for the PaLM,
LaMDA, and GPT models at larger parameter counts.

4.2 Scientific Debugging: AutoSD

Scientific Debugging is a method of debugging by which developers maintain
an iterative debugging log of five steps:

1. Hypothesis, where a description is given of what the bug could be;

2. Prediction, of an expected outcome if the hypothesis is true;

3. Experiment, to verify the prediction;

4. Observation, the result of an experiment; and

5. Conclusion, a judgement of the hypothesis.

Kang et al. focused on the importance of explanation of automated pro-
gram repair results in scientific debugging [3], including techniques such as
Fault Localization (FL), of which 85% of developers agree that providing
rationale is important. The study presented describes one method of prompt

5



engineering. The process consists of providing a definition of Scientific De-
bugging (SD), complemented with examples of hypotheses, predictions, ex-
periments, observations, and conclusions. After an initial prompt is prepared,
the process, called AutoSD, generates a hypothesis on what is wrong with the
code and how it can be fixed. It then produces and executes code to validate
that hypothesis, after which the process will terminate and either generate a
fix or loop from the beginning. AutoSD was evaluated on the Almost-Right
Human Eval (ARHE) dataset, which was created by taking human solutions
to bugs and modifying them such that exactly one test fails, creating “al-
most” right code. When comparing AutoSD to prompting an LLM for a
fix without any specific prompt engineering techniques (LLM-Base), it per-
formed ten points better than LLM-Base on plausibly correct and correct bug
fixes. In the Defects4J 1.2 benchmark, AutoSD performed 11 points worse
than LLM-Base, while in the Defects4J 2.0 benchmark, AutoSD performed
3 points better than LLM-Base.

4.3 Discussion

These approaches for higher quality explanations demonstrate how providing
specific context to a large language model in input text can have a substan-
tive impact on explainability by providing a “template” for the LLM to follow
when producing its output. The CoT approach implements this by includ-
ing within the prompt examples of expected reasoning. Similarly, AutoSD
describes the process of SD and examples of hypotheses along with other
key aspects of SD. Both CoT and AutoSD are methods which “train” the
LLM to simulate or imitate procedures which lend themselves to explainable
outputs.

5 Uncertainty

Related to the problem of explainability in large language models is the prob-
lem of reliably measuring uncertainty. This is important because without an
accurate measure, it is not worthwhile to use generated outputs as a reli-
able source of information [4]. Large language models have been shown to
produce confidently incorrect answers to questions commonly asked of them.
This often requires the user of an LLM to validate the answer it provides,
partially or entirely undermining the value of using the program to start

6



with. Below, we describe some major approaches for uncertainty estimation
in large language models.

5.1 Semantic Uncertainty

Kuhn et al. estimated what they call semantic likelihoods, which are prob-
abilities attached to the meanings of text. They used semantic likelihoods
to compute semantic entropy, a measure of uncertainty across those different
meanings [4]. Practically, entropy, and by extension, semantic entropy, is a
measure of the likelihood of certain text being true.

Consider the question “What is the first element of the Periodic Table?”
and three answers to the question: “The element is Hydrogen”, “Hydrogen”,
and “Oxygen.” Assigning an arbitrary probability to each corresponding to
the likelihood it is true, we may obtain 0.5, 0.4, and 0.1, respectively:

• “The element is Hydrogen”: 0.5

• “Hydrogen”: 0.4

• “Oxygen”: 0.1

Computing the semantic likelihood simply requires adding statements which
mean the same thing, since they should be considered equivalent. Follow-
ing this procedure, we group “The element is Hydrogen” and “Hydrogen”
together, and add their probabilities, yielding 0.9 as the semantic likelihood
that the first two answers are true, and a 0.1 semantic likelihood that “Oxy-
gen” is true:

• “The element is Hydrogen” + “Hydrogen”: 0.9

• “Oxygen”: 0.1

Grouping the likelihoods in this manner results in a much lower semantic
entropy than standard entropy (calculated from the original “standard” like-
lihoods), where a lower entropy is interpreted as less uncertainty in the
output.

The algorithm to estimate semantic uncertainty consists of first gener-
ating a set of answers from a model according to a particular probabilistic
distribution. Then, the answers are clustered by semantic equivalence,
which results in sets of answers which share the same meaning with respect

7



to the context of the question being asked. The semantic equivalence is
calculated using a novel algorithm based on bi-directional entailment. The
algorithm returns that two sentences are equivalent if one sentence entails
the other sentence and vice versa. For example, consider the question, “What
is the capital of Paris?”, and two sentences in response: “The capital of Paris
is France,” and “Paris is the capital of France.” Each of the two sentences
necessarily imply that the other sentence is true, so they are semantically
equivalent. Finally, the semantic entropy is calculated. The semantic entropy
measure was evaluated using the area under the receiver operator character-
istic curve (AUROC), which yields values closer to 1 when the probability
that a randomly chosen correct answer has a higher uncertainty score than a
randomly chosen incorrect answer. Semantic entropy predicted model accu-
racy better than normalized entropy, entropy, and lexical similarity on Trivi-
aQA, a question-answer dataset, and CoQA a conversational question-answer
dataset. In TriviaQA, at the highest parameter count of the model, semantic
uncertainty reached an AUROC score of approximately .83, while normal-
ized entropy, the second-highest score, was approximately .78. In CoQA, at
the highest parameter count of the model, semantic uncertainty reached an
AUROC score of approximately .77 and normalized entropy reached a score
of approximately .74.

Duan et al. responds to the notable limitation Kuhn et al. did not ad-
dress: that some tokens are more relevant to semantic meaning of a text than
other tokens, yet are treated equally when estimating uncertainty, termed
“generative inequalities” [2]. They introduce the idea of Shifting Atten-
tion to Relevance (SAR) uncertainty estimation. For example, consider the
phrase, “density of an object,” as a response to the question, “What is the
ratio of the mass of an object to its volume?” With the previous method
proposed by Kuhn et al., the token “of”, while not very relevant to the re-
sponse, contributed the most uncertainty. SAR uncertainty estimation shifts
“attention” to the most relevant components (i.e. “density” in the above
example) of a response.

To estimate SAR uncertainty, attention shifting is performed on both the
token level and at the sentence level. For each token, a relevance score is
calculated, which is used to emphasize or de-emphasize token entropy based
on those relevance scores. At the sentence level, sentences which have a
high generative probability, i.e., a more compelling sentence, are emphasized.
Evaluations of this method show that SAR improves on the Semantic Entropy
calculations proposed by Kuhn et al. on both CoQA and TriviaQA using

8



OpenAI’s state-of-the-art GPT models.

5.2 Discussion

A training process could employ a strategy, like the computation of seman-
tic entropy, as a feedback mechanism of the mode to minimize incorrect
generations and generations unlikely to be correct beyond some threshold.
Calculation of semantic entropy on specific components of a model’s output
could also be used as part of the generation process to highlight areas, either
text-based within the model itself, or as part of a client user interface, where
the uncertainty estimation determines the model is likely not correct in an
assertion.

6 Mitigating Hallucinations

6.1 Hallucinations

An undesirable behavior in some use cases for large language models, such
as code generation, is its tendency to “hallucinate,” where it infers con-
text, either correct or incorrect, about a situation while presenting it as if
it were fact. In code generation, this may manifest as function names or
libraries present in code samples which do not exist. Alternatively, consider
the question, “How many deaths has the virus caused in the United States?”
If a model’s training data consists of many instances of virus referring to
COVID-19, it may “hallucinate” that the user asked about that particular
virus. If that was indeed what the user was asking about, the “hallucination”
may have been beneficial.

Nick McKenna et al. designed an experiment to test two causes of halluci-
nations in large language models, The Veracity Prior and The Relative
Frequency Heuristic [5]. The Veracity Prior is a measure of whether a
statement is consistent with the LLM training data. Consider a premise,
“More than 19 million people live in the New York City metropolitan area,”
and a hypothesis, “New York City is the most populous metropolitan area
in the United States.” The experiment uses the Levy/Holt dataset, which
contains premise-hypothesis pairs of the form “Given [some premise], is it
true that [some hypothesis]?” The premises and hypotheses were inserted
into a prompt template that was fed to the model. If a premise entails a hy-

9



pothesis, then if the premise is true, it necessarily follows that the hypothesis
is also true. The results of an experiment to determine the reliance on the
veracity prior using LLaMa, GPT-3.5, and PaLM, showed an approximately
2x higher chance of predicting that a premise entails a hypothesis when the
hypothesis has been previously judged to be truthful. Using prior knowledge,
i.e. memorization of hypotheses in training data, may result in hallucinations
in situations where knowledge is provided to an LLM as context by the user,
and the LLM then uses information not present in the user-provided context
when providing an answer.

The Relative Frequency Heuristic assigns a label of Entail if a premise,
such as “More than 19 million people live in the New York City metropolitan
area” is found less frequently in the dataset than a hypothesis, such as “New
York City is the most populous metropolitan area in the United States.”
This is relevant because specific terms in text corpora are normally less fre-
quently present (corpus-frequency), while the opposite is true for general
terms. Thus, less corpus-frequent terms may entail more corpus-frequent
seen terms. The heuristic is measured according to Google N-grams, which
charts the frequency of search strings in Google’s text corpora. This is used
as an approximation of the natural distribution of text. Results of an addi-
tional experiment showed that when Natural Language Inference (NLI) test
samples, such as the premise-hypothesis pairs found in the Levi/Holt dataset,
conform to the relative frequency heuristic, despite the existence of no se-
mantic relationship between the premise and hypothesis, models are more
likely to falsely report Entail. False positive rates, i.e. frequency at which
models reported a semantic relationship between a premise and a hypothe-
sis, were measured at 1.5x, 1.7x, and 2.0x for LLaMA, GPT-3.5, and PaLM,
respectively.

6.2 Mixed-contrastive Learning

Weiwei Sun et al. proposed a method called Mixed-contrastive Learning
(MixCL) to mitigate hallucinations by large language models [8], by contrast-
ing the ground truth with samples of “confusing” knowledge, where “con-
fusing” knowledge is knowledge that has a substantial likelihood of causing
the model to hallucinate. This approach reduces the probability of gener-
ating answers incongruent with the ground truth. MixCL consists of two
primary steps: negative sampling and mixed-contrastive learning. The first
step uses “positive knowledge” (z+; factual and relevant) and a sampling of

10



“negative knowledge” (z−; not factual or not relevant). While existing con-
trastive learning strategies are able to reduce hallucinations at the sentence
level, MixCL seeks to mitigate hallucinations at the span level, i.e. a non-
overlapping subset, or sequence of tokens, within a sentence. It achieves this
through a process of extracting spans from both positive and negative knowl-
edge, mixing positive and negative knowledge spans together to form new se-
quences, and optimizing the model using mixed-contrast loss, a loss function
based on contrastive learning. For example, consider two knowledge state-
ments about former Apple CEO Steve Jobs: “He was born and raised in San
Francisco” (positive knowledge) and “He was born and raised in Cupertino”
(negative knowledge). Mixing these spans together involves taking one span
from a snippet of z+, like “Paris,” and substituting it for the corresponding
span from a snippet in z−, like “Cupertino”. The results of an experiment
on the Wizard of Wikipedia dataset show that MixCL achieves higher scores
with human evaluations than all the language-model-based methods under
realistic conditions for informativeness, relevance, factuality, and humanlike-
ness. Weiwei Sun et. al. used the Fleiss’ kappa statistical measure to de-
termine reliability of agreement between the human evaluations on MixCL.
They measured a score of over 0.60, indicating substantial agreement.

6.3 Discussion

The tendency of large language models to hallucinate based on the level of
understanding it has of a situation’s context can lead to incorrect assump-
tions based on a hypothesis being true when given an unrelated premise
(Veracity Prior). In addition, the frequency of a hypothesis in the text
corpora can influence a model’s judgement of whether a premise entails that
hypothesis (Relative Frequency Heuristic. MixCL reduces hallucinations
of irrelevant and incorrect spans.

Mitigating hallucinations may be an important step towards more ac-
curate uncertainty measures of large language model outputs as it reduces
the probability of measuring a large uncertainty value for any given out-
put. Furthermore, since hallucinations are a fundamental problem of the
current design of large language models, limiting hallucinations can enable
more precise fine-tuning of truthfulness using semantic uncertainty measures
of output in model training and inference.

11



7 Proposed Method

We propose a framework which aims to improve three primary qualities in the
current state-of-the-art large language models: explainability; uncertainty;
and hallucinations. Hallucinations are the primary focus area to improve as
it decreases the value of explained responses and uncertainty calculations.
If an explanation contains many span-level hallucinations which make an
argument incorrect in subtle ways, that explanation is minimally valuable
for the user.

Training LLMs to produce more robustly explained answers to questions
is also crucial in the pursuit of reflecting confidence levels, because uncer-
tainty can be measured more precisely. While standalone numerical or text
outputs can be measured for uncertainty [4], such an uncertainty measure-
ment provides no useful information to an end user, who may be interested
in specific parts of a response which may not be correct. Uncertainty esti-
mation of parts of an explanation could be used to produce text by which
the LLM informs the user where it is uncertain. However, this requires that
the model be trained to reflect a level of uncertainty in its explanations.

Using the GPT-3.5 model structure as a base, we propose that a mixed-
contrastive learning (Sec. 6.2) framework be integrated into the model train-
ing cycle. During the unsupervised learning component of the cycle, the
model will take into account minimization of the mixed-contrastive loss func-
tion when calculating adjustments to parameters. In the supervised reinforce-
ment learning component, human reviewers will sample responses from the
model and extract positive (z+) and negative (z−) knowledge spans to be
used by the mix-up and loss functions, as defined by MixCL. These mixed
spans will then be provided as inputs to the unsupervised portion of training.
Implementing MixCL in the training cycle should reduce span-level halluci-
nations in responses to improve the value of explanations of reasoning by the
model.

In order to improve the explanations of large language models, I pro-
pose the generation of a large set of appropriately explained responses using
prompt engineering techniques to serve as a sample size, such as [9] [3], dur-
ing the reinforcement learning with human feedback (RLHF) component.
At scale, it is infeasible for humans to generate a very large set, so we pro-
pose training a generative model on a small dataset of sample human-created
prompts, which may then be used to expand the sample size through unsu-
pervised learning and inference. These responses should be incorporated in

12



Figure 2: Example of the Mixture-of-Experts model used by GPT-4 [7].
The input is passed to a set of “expert” models, which generate an output
and send it to the Gating model. The Gating model determines the “best”
output using a variety of criteria, including semantic uncertainty Sec. 5.1.
The Gating model then returns the best response as the output to the user.

the feedback loop created by the combination of RLHF and unsupervised
learning. We also propose that human reviewers in the RLHF segment em-
phasize how well a model explains its answer to an engineered prompt in
deciding whether a response to a knowledge question is “good.”

Uncertainty estimation is the final component in the proposal to im-
prove accuracy in large language models. This should be integrated into the
training cycle through a gating model, i.e. the one employed by GPT-4’s
Mixture-of-Experts (MoE) approach (fig. 3). Using each of the expert mod-
els’ responses as input, the gating model will perform semantic uncertainty
calculations defined by Kuhn et. al. [4] and improved upon by Duan et.
al. [2] and described in Sec. 5.1 to determine the “best” response, which is
then provided to the user as the output. This, while a necessary step to-
wards improving accuracy in large language models, is insufficient without

13



Figure 3: A broad overview of the proposed architecture. The unsupervised
portion uses the information gained from the RLHF portion and MixCL to
train the individual experts, then returned to the RLHF portion in a cycle.
An initial CoT sample set is passed to a generative model used by the RLHF
portion.

acknowledging to the user where uncertainty may exist. Therefore, we pro-
pose the addition of an external service which employs semantic uncertainty
calculations on a per-sentence basis to highlight where the model may be
uncertain. Alternatively, the model could provide the semantic uncertainty
to the user directly.

8 Future Work

While Sec. 7 describes potential broad architectural changes based on that of
GPT-3 and GPT-4, it does not explain precise implementation details, nor

14



does it provide a proof-of-concept to demonstrate its effectiveness. Future
work will entail creating and testing a working design to determine whether
these architectural modifications do, in fact, lead to substantive improve-
ments in model accuracy, explainability, and reductions in hallucinations.

Future research will also explore alternative methods for determining un-
certainty in LLM responses. One such question is whether more “human”
responses are necessarily correlated with higher accuracy or “truthfulness.”
If there is such a correlation, one such method for improving accuracy may
involve an approach similar to that of a Generative Adversarial Network,
where the LLM seeks to maximize the “human” aspect of its responses, to
make it as indistinguishable as possible from a human response.

9 Conclusion

This paper reviews three main issues with current state-of-the-art LLMs and
approaches to improve their qualities. These are hallucinations, explain-
ability, and uncertainty. We explore several approaches to mitigate these
issues independently, such as MixCl (Sec. 6.2), CoT prompting (Sec. 4.1),
and semantic uncertainty (Sec. 5.1), respectively. Then, we propose a set of
modifications to the structure of the GPT-series of models to integrate the
MixCL, CoT prompting, and semantic uncertainty calculations together into
a cohesive feedback loop which may be successful.

Advancing these qualities of LLMs together is crucial for making large
language model-based approaches more viable across a wide suite of use
cases. As an example, more powerful LLMs may lead to effectively providing
answers in general knowledge tasks typically reserved for a search engine,
greatly improving productivity, or in carrying out writing tasks without in-
corporating “hallucinated,” unwanted details. It is insufficient to address
these problems (hallucinations, explainability, or uncertainty) independently;
solutions must be integrated with each other to advance the entire state of
large language models so they are more accurate, better able to reflect their
level of certainty, and can explain themselves more competently. This will
help LLMs become more useful tools for all aspects of society.

15



References

[1] Katharina Buchholz. Time to One Million Users. 2023. url: https:
//www.statista.com/chart/29174/time-to-one-million-users/.

[2] Jinhao Duan et al. “Shifting Attention to Relevance: Towards the Un-
certainty Estimation of Large Language Models”. In: arXiv preprint
arXiv:2307.01379 (2023).

[3] Sungmin Kang et al. Explainable Automated Debugging via Large Lan-
guage Model-driven Scientific Debugging. 2023. arXiv: 2304.02195 [cs.SE].

[4] Lorenz Kuhn, Yarin Gal, and Sebastian Farquhar. Semantic Uncer-
tainty: Linguistic Invariances for Uncertainty Estimation in Natural
Language Generation. 2023. arXiv: 2302.09664 [cs.CL].

[5] Nick McKenna et al. Sources of Hallucination by Large Language Models
on Inference Tasks. 2023. arXiv: 2305.14552 [cs.CL].

[6] Matt Rickard. Is GPT-4 Just Eight Smaller Models. 2023. url: https:
//matt-rickard.com/mixture-of-experts-is-gpt-4-just-eight-

smaller-models.

[7] Noam Shazeer et al. Outrageously Large Neural Networks: The Sparsely-
Gated Mixture-of-Experts Layer. 2017. arXiv: 1701.06538 [cs.LG].

[8] Weiwei Sun et al. “Contrastive Learning Reduces Hallucination in Con-
versations”. In: Proceedings of the AAAI Conference on Artificial Intel-
ligence 37.11 (2023), pp. 13618–13626. doi: 10.1609/aaai.v37i11.
26596. url: https://ojs.aaai.org/index.php/AAAI/article/
view/26596.

[9] Jason Wei et al. “Chain-of-thought prompting elicits reasoning in large
language models”. In: Advances in Neural Information Processing Sys-
tems 35 (2022), pp. 24824–24837.

16

https://www.statista.com/chart/29174/time-to-one-million-users/
https://www.statista.com/chart/29174/time-to-one-million-users/
https://arxiv.org/abs/2304.02195
https://arxiv.org/abs/2302.09664
https://arxiv.org/abs/2305.14552
https://matt-rickard.com/mixture-of-experts-is-gpt-4-just-eight-smaller-models
https://matt-rickard.com/mixture-of-experts-is-gpt-4-just-eight-smaller-models
https://matt-rickard.com/mixture-of-experts-is-gpt-4-just-eight-smaller-models
https://arxiv.org/abs/1701.06538
https://doi.org/10.1609/aaai.v37i11.26596
https://doi.org/10.1609/aaai.v37i11.26596
https://ojs.aaai.org/index.php/AAAI/article/view/26596
https://ojs.aaai.org/index.php/AAAI/article/view/26596

	Abstract
	Introduction
	Related Work
	Explainability
	Chain-of-Thought Prompting
	Scientific Debugging: AutoSD
	Discussion

	Uncertainty
	Semantic Uncertainty
	Discussion

	Mitigating Hallucinations
	Hallucinations
	Mixed-contrastive Learning
	Discussion

	Proposed Method
	Future Work
	Conclusion

